ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yuichiro Yamashita, Takehiko Yokomine, Shinji Ebara, Akihiko Shimizu
Fusion Science and Technology | Volume 46 | Number 4 | December 2004 | Pages 541-547
Technical Paper | doi.org/10.13182/FST04-A589
Articles are hosted by Taylor and Francis Online.
The purpose of the Experimental Vacuum Ingress Test Apparatus (EVITA) program is to obtain useful data for safety analysis of serious potential accidents for ITER. The numerical predictions for EVITA have been done by using the MELCOR, PAX, and CONSEN codes under conditions in which temperature is always kept above 273 K. In the EVITA program, high-temperature and high-pressure steam is injected into the vacuum vessel housing the cryogenic plate. Consequently, the phenomena that occur in the vicinity of the impingement surface are expected to be exceedingly transient and complex. The subject of this study is the development of a valid numerical code for the EVITA program. A key point of this study is to describe all of the phenomena, for example, shock-wave propagation and phase change under low pressure. In this study, the C-CUP method is employed, which describes these phenomena. To investigate phenomena with EVITA, numerical analysis had been done with several conditions concerned with input power. As a result, we succeeded in obtaining a fundamental code for the EVITA program as well as interesting views of EVITA.