ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
K. Ezato, M. Dairaku, M. Taniguchi, K. Sato, S. Suzuki, M. Akiba, C. Ibbott, R. Tivey
Fusion Science and Technology | Volume 46 | Number 4 | December 2004 | Pages 530-540
Technical Paper | doi.org/10.13182/FST04-A588
Articles are hosted by Taylor and Francis Online.
The first fabrication and heating test of a large-scale carbon-fiber-composite (CFC) monoblock divertor mock-up using an annular flow concept has been performed to demonstrate its manufacturability and thermomechanical performance. This mock-up is based on the design of the lower part of the vertical target of the International Thermonuclear Experimental Reactor (ITER) divertor adapted for the annular flow concept. The annular cooling tube consists of two concentric tubes: an outer tube made of CuCrZr and an inner stainless steel tube with a twisted external fin. Prior to the fabrication of the mock-up, brazed joint tests between the CFC monoblock and the CuCrZr tube have been carried out to find the suitable heat treatment mitigating loss of the high mechanical strength of the CuCrZr material. A basic mechanical examination of CuCrZr undergoing the brazing heat treatment and finite element method analyses are also performed to support the design of the mock-up. High heat flux tests on the large-scale divertor mock-up have been performed in an ion beam facility. The mock-up has successfully withstood more than 1000 thermal cycles of 20 MW/m2 for 15 s and 3000 cycles of >10 MW/m2 for 15 s, which simulates the heat load condition of the ITER divertor. No degradation of the thermal performance of the mock-up has been observed throughout the thermal cycle test although in the tile with exposure to the heat flux of 20 MW/m2, the erosion depth has been measured as 5.8 and 8.8 mm at the 300th and 500th cycles.