ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Yoda, S. I. Abdel-Khalik, ARIES-IFE Team
Fusion Science and Technology | Volume 46 | Number 3 | November 2004 | Pages 451-469
Technical Paper | ARIES-IFE | doi.org/10.13182/FST04-A583
Articles are hosted by Taylor and Francis Online.
Experimental and numerical studies of the fluid dynamics of thin liquid film wall protection systems have been conducted in support of the ARIES-IFE study. Both the porous "wetted wall" concept, involving low-speed injection through a porous wall normal to the surface, and the "forced film" concept, involving high-speed injection through slots tangential to the surface, have been examined. These initial studies focus upon the "preshot" feasibility of these concepts, between chamber clearing and the fusion event.For the wetted wall, a three-dimensional level contour reconstruction method was used to track the evolution of the liquid film on downward-facing walls for different initial conditions and liquid properties with evaporation and condensation at the free surface. The effects of these parameters on the film dynamics, the free surface topology, the frequency of liquid drop formation and detachment, the minimum film thickness between explosions, and the equivalent diameter of detached drops have been analyzed. Initial experimental results are in reasonable agreement with the numerical predictions. Generalized nondimensional charts for identifying appropriate "design windows" for successful operation of the wetted wall protection concept have been developed. The results demonstrate that a minimum repetition rate is required to avoid liquid dripping into the reactor cavity and that a minimum injection velocity is required in order to maintain a minimum film thickness over the first wall.For the forced film concept, experimental investigations of high-speed water films injected onto downward-facing flat and curved surfaces at angles of inclination up to 45 deg below the horizontal were conducted. Mean detachment length and the lateral extent of the film were measured for a wide range of liquid-solid contact angles at different values of the initial film thickness, liquid injection speed, and surface orientation. The results show that the film detaches earlier (i.e., farther upstream) for nonwetting surfaces and for flat (versus curved) surfaces. The nonwetting flat surface data are therefore used to establish a conservative "design window" for film detachment. Initial observations of film flow around cylindrical obstacles suggest that cylindrical dams are incompatible with forced films.