ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
F. Najmabadi, A. R. Raffray, ARIES-IFE Team: S. I. Abdel-Khalik, L. Bromberg, L. A. El-Guebaly, D. Goodin, D. Haynes, J. Latkowski, W. Meier, R. Moore, S. Neff, C. L. Olson, J. Perkins, D. Petti, R. Petzoldt, D. V. Rose, W. M. Sharp, P. Sharpe, M. S. Tillack, L. Waganer, D. R. Welch, M. Yoda, S. S. Yu, M. Zaghloul
Fusion Science and Technology | Volume 46 | Number 3 | November 2004 | Pages 401-416
Technical Paper | ARIES-IFE | doi.org/10.13182/FST04-A580
Articles are hosted by Taylor and Francis Online.
The ARIES-IFE study was an integrated study of inertial fusion energy (IFE) chambers and chamber interfaces with the driver and target systems. Detailed analysis of various subsystems was performed parametrically to uncover key physics/technology uncertainties and to identify constraints imposed by each subsystem. In this paper, these constraints (e.g., target injection and tracking, thermal response of the first wall, and driver propagation and focusing) were combined to understand the trade-offs, to develop operational windows for chamber concepts, and to identify high-leverage research and development directions for IFE research. Some conclusions drawn in this paper are (a) the detailed characterization of the target yield and spectrum has a major impact on the chamber; (b) it is prudent to use a thin armor instead of a monolithic first wall for dry-wall concepts; (c) for dry-wall concepts with direct-drive targets, the most stringent constraint is imposed by target survival during the injection process; (d) for relatively low yield targets (<250 MJ), an operational window with no buffer gas may exist; (e) for dry-wall concepts with indirect-drive targets, a high buffer gas pressure would be necessary that may preclude propagation of the laser driver and require assisted pinch transport for the heavy-ion driver; and (f) generation and transport of aerosols in the chamber is the key feasibility issue for wetted-wall concepts.