ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
F. Najmabadi, A. R. Raffray, ARIES-IFE Team: S. I. Abdel-Khalik, L. Bromberg, L. A. El-Guebaly, D. Goodin, D. Haynes, J. Latkowski, W. Meier, R. Moore, S. Neff, C. L. Olson, J. Perkins, D. Petti, R. Petzoldt, D. V. Rose, W. M. Sharp, P. Sharpe, M. S. Tillack, L. Waganer, D. R. Welch, M. Yoda, S. S. Yu, M. Zaghloul
Fusion Science and Technology | Volume 46 | Number 3 | November 2004 | Pages 401-416
Technical Paper | ARIES-IFE | doi.org/10.13182/FST04-A580
Articles are hosted by Taylor and Francis Online.
The ARIES-IFE study was an integrated study of inertial fusion energy (IFE) chambers and chamber interfaces with the driver and target systems. Detailed analysis of various subsystems was performed parametrically to uncover key physics/technology uncertainties and to identify constraints imposed by each subsystem. In this paper, these constraints (e.g., target injection and tracking, thermal response of the first wall, and driver propagation and focusing) were combined to understand the trade-offs, to develop operational windows for chamber concepts, and to identify high-leverage research and development directions for IFE research. Some conclusions drawn in this paper are (a) the detailed characterization of the target yield and spectrum has a major impact on the chamber; (b) it is prudent to use a thin armor instead of a monolithic first wall for dry-wall concepts; (c) for dry-wall concepts with direct-drive targets, the most stringent constraint is imposed by target survival during the injection process; (d) for relatively low yield targets (<250 MJ), an operational window with no buffer gas may exist; (e) for dry-wall concepts with indirect-drive targets, a high buffer gas pressure would be necessary that may preclude propagation of the laser driver and require assisted pinch transport for the heavy-ion driver; and (f) generation and transport of aerosols in the chamber is the key feasibility issue for wetted-wall concepts.