ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Thomas V. Prevenslik
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 128-136
Technical Paper | doi.org/10.13182/FST98-A58
Articles are hosted by Taylor and Francis Online.
Sonoluminescence (SL) may be explained by the Planck theory of SL, which treats the bubbles as miniature collapsing IRasers having a resonant frequency that always increases as the bubble collapses. Microwaves are created at frequencies proportional to the collapse velocity while optical waves in standing resonance with the characteristic dimension of the IRaser cavity are absorbed by the bubble wall molecules. The microwaves are absorbed at ambient temperature and accumulate to visible-ultraviolet photon levels through the rotation quantum state of the bubble wall molecules. In the Planck theory of SL, the collapse shape in multiple-bubble SL (MBSL) is treated as a pancake, whereas in single-bubble SL (SBSL) the collapse shape is treated as spherical. High bubble gas temperatures are unlikely in MBSL because the bubble gases in a pancake collapse are squeezed radially outward in almost constant volume at ambient temperature. However, SL spectra in MBSL are found to be far more intense than SBSL, yet the SBSL collapse shape is spherical. Because a bubble gas temperature increase is unlikely in MBSL, and because MBSL is more intense than SBSL, it is concluded that a temperature increase in an SBSL collapse is also unlikely even though the collapse is spherical. Hence, the prospects for hot fusion in a spherical SBSL collapse are not encouraging. However, a limited number of SL-induced fusion events in D2O may be possible in MBSL and SBSL as the bubble walls approach the spacing between D2O molecules in the liquid state. On average, reactions between the D's on colliding D2O bubble wall molecules do not occur as the Planck energy is limited to ~1.3 keV, but some fusion events with a Planck energy >10 keV are not impossible.