ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Tamara Andreeva, Craig D. Beidler, Ewald Harmeyer, Yuri L. Igitkhanov, Yaroslav I. Kolesnichenko, Vadym V. Lutsenko, Alexander Shishkin, Franz Herrnegger, Johann Kißlinger, Horst F. G. Wobig
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 395-400
Technical Papers | Stellarators | doi.org/10.13182/FST04-A579
Articles are hosted by Taylor and Francis Online.
The Helias reactor (HSR) is an upgraded version of the Wendelstein 7-X (W7-X) experiment. A straightforward extrapolation of W7-X leads to a five-period configuration with a major radius of 22 m. To reduce the size of the reactor, another option with four periods has been investigated. Recent studies have focused on a three-period Helias configuration (HSR3/15i) (major radius 15 m, plasma radius 2.5 m, B = 5 T), which presents a more compact option than the five- and four-period configurations. In HSR3/15i, the resulting magnetic configuration is consistent with the island divertor concept. The stochastic region outside the last magnetic surface is imposed by the remnants of the 3/4 islands and the plasma flows along distinct channels toward the plates. The main problem is due to the high value of the bootstrap current (~1 MA) and alpha-particle losses (estimated as 6%). Further optimization of HSR3/15i can cause the maximum value of the magnetic field at the superconductive coils to be exceeded. There is a trade-off between physics goals (alpha-particle confinement and small bootstrap current) and technical realization (NbTi technology). The comparative analysis of different period configurations will be presented.