ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA to file for Clinch River SMR construction permit by June
In a Q&A posted on TVA’s website last week about a “new nuclear heyday,” Bob Deacy shared his vision for the Clinch River nuclear site in Oak Ridge, Tenn.—and some news about next steps for the company’s small modular reactor plans.
The Tennessee Valley Authority’s senior vice president for the Clinch River project, Deacy described his vision for up to four SMRs built on plots smaller than a football field with state-of-the-art digital equipment and a newly trained workforce providing reliable 24/7 power to the grid.
Yuriy Ponkratov, Kuanysh Samarkhanov, Yerbolat Koyanbayev, Yuliya Baklanova, Yuriy Gordienko, Yevgeniy Tulubayev, Yekaterina Martynenko, Vadim Bochkov, Radmila Sabitova, Eldana Saparbek
Fusion Science and Technology | Volume 81 | Number 4 | May 2025 | Pages 300-309
Research Article | doi.org/10.1080/15361055.2024.2388421
Articles are hosted by Taylor and Francis Online.
The implementation of the ITER and DEMO projects currently includes the investigation of the structural and functional material properties of fusion reactors (FRs). Research to support the use of liquid metals and alloys as plasma-facing materials (PFMs) is a crucial area of work during the development of new FRs. Recent studies indicate the prospects of the tin-lithium (Sn-Li) alloy as a new liquid metal for protecting the in-vessel elements of a FR from the energy flows and high-density particles. Sn-Li alloy has been widely explored for utilization as PFM; however, there is a shortage of investigations being performed at nuclear reactors. The utilization of Sn-Li alloy as PFM in a FR must be fully justified by validated experimental results on tests under extremely high heat, plasma, and radiation loads.
The paper presents the methodology of in-pile experiments performed at the IVG.1M research reactor (Kurchatov, Kazakhstan) to study the interaction of hydrogen isotopes with Sn-Li alloy under neutron irradiation conditions. A Sn-Li sample with 73 at. % tin and 27 at. % lithium was manufactured. A unique experimental ampoule device (AD) with a Sn-Li sample had been developed and manufactured for in-pile tests. The results of neutron-physical and thermophysical calculations of designs of the experimental device with Sn-Li alloy under irradiation conditions of the IVG.1M reactor were performed to justify the AD design. Methodical experiments were performed to determine the temperature dependence of the change in the composition of the gas phase in the chamber with Sn-Li alloy. The time dependence of the partial pressure of hydrogen, tritium, and tritium-containing molecules in the AD volume with the Sn-Li alloy on its temperature under reactor irradiation conditions at a power of 3 MW has been studied. Key findings include the successful measurement of tritium release, the determination of temperature conditions for tritium generation and release, and the validation of our experimental AD for conducting such studies.