ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Saira Gulfam, Kamran Ahmad, Muhammad Bilal, Muhammad Taimoor Saleem, Zahoor Ahmad
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 232-243
Research Article | doi.org/10.1080/15361055.2024.2392412
Articles are hosted by Taylor and Francis Online.
During tokamak operation, the structural integrity of the vacuum vessel (VV) of Metallic Tokamak-I (MT-I), a small spherical tokamak, was evaluated. This evaluation involved simulating real experimental data of electromagnetic (EM) and structural loads using the ANSYS platform. Internal heat generation, induced currents, and inertial and pressure loads in the VV were analyzed to determine their effects on the VV. This analysis was conducted on a 180-deg sector model over a 10-ms-event period. To create multiple checkpoint events, the plasma current was assumed to be formed at variable positions of the VV, hence inducing variable current for each event. The events are divided into four cases based on the radial and vertical displacements of plasma. The response of the VV structure was calculated using coupling of EM and structural modules of ANSYS. It is observed from the numerical results that the maximum stress on the VV is in a safe range and that the temperature rise on the vessel can be reduced by natural convection only if the event is ended in 10 ms. A prolonged event can result in permanent deformation in the VV structure. A disruption event on the limiter region is also studied.