ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
EPA administrator Lee Zeldin talks the future of nuclear
In a recent interview on New York radio station 77 WABC, administrator of the Environmental Protection Agency Lee Zeldin talked with host John Catsimatidis about the near-term future of the domestic nuclear industry and the role the EPA will play in the sector.
Catsimatidis kicked off the interview by asking if the U.S. will be able to reach total energy independence. Zeldin responded by saying that decreasing energy dependence on other countries, especially adversaries, was a top priority for him and the Trump administration.
Andreas Dinklage, Rainer Fischer, Jakob Svensson
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 355-364
Technical Papers | Stellarators | doi.org/10.13182/FST04-A575
Articles are hosted by Taylor and Francis Online.
Steady-state fusion devices, such as Wendelstein 7-X, require new approaches for data analysis. These efforts are motivated by both the physics and the technical requirements of steady-state operation. Diagnostic data and physics information, such as modeling results, are linked to arrive at an integrated data analysis. For this purpose, methods of Bayesian probability theory are employed. The analysis of Thomson scattering data is discussed. Capabilities for assessing diagnostic setups are outlined. Extension to more complex analyses are presented. Technical issues resulting from desired on-line capabilities are discussed.