ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 81 | Number 2 | February 2025 | Pages 161-178
Research Article | doi.org/10.1080/15361055.2024.2352660
Articles are hosted by Taylor and Francis Online.
For the design of the liquid-metal blanket in a fusion reactor, numerical calculations have been carried out on liquid-metal magnetohydrodynamic flows in rectangular ducts with sudden contractions. Conservation equations of fluid mass and fluid momentum and the Poisson equation for electrical potential have been solved numerically. The numerical calculations have been conducted for a Hartmann number of ~10 000; a Reynolds number of ~10 000; and contraction ratios (CRs) of 2, 3, and 4. The pressure loss through the contraction has been estimated by the loss coefficient ζ divided by the interaction parameter N, i.e. ζ/N. The loss coefficient ζ/N through the contraction parallel to the magnetic field is much larger than that through the corresponding contraction perpendicular to the magnetic field. The loss coefficient ζ/N increases consistently with the CR and does not change very much with N. While ζ/N also does not change very much with the wall conductance ratio for the contraction parallel to the magnetic field, ζ/N increases gradually with the wall conductance ratio for the contraction perpendicular to the magnetic field.