ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Minsuk Seo, Shukai Yu, Venkatraman Gopalan, A. Leigh Winfrey
Fusion Science and Technology | Volume 81 | Number 2 | February 2025 | Pages 118-131
Research Article | doi.org/10.1080/15361055.2024.2343972
Articles are hosted by Taylor and Francis Online.
Tungsten and tungsten carbide were damaged in ambient air with varying incident angles (0, 30, 45, and 60 deg) for approximately 5000 shots. The goal of these experiments was to observe the macroscopic surface modification in tungsten and tungsten carbide surfaces in harsh environments. At low pulse numbers (one to eight laser pulses on the same spot), tungsten aerial surface damage was less than tungsten carbide damage; however, at very high pulse numbers (5000), the opposite was true. Surface damage was mostly in the form of craters that were near circular at low impact angles and became more elongated at higher laser pulse impact angles. On the tungsten surface, a cluster of tungsten oxide debris formed. During laser exposure, laser-induced periodic surface structures and grooves were formed, and their geometries varied with laser intensity and laser impact angle. The period of laser-induced surface changes increased as the incident angle increased for both tungsten and tungsten carbide surfaces. More mass was lost in tungsten than tungsten carbide, which agrees with the morphological responses.