ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
IAEA: Gunfire, drone attack at Ukraine’s Zaporizhzhia nuclear plant
The International Atomic Energy Agency team at Ukraine’s Zaporizhzhia nuclear power plant (ZNPP) reported hearing gunfire near the site this morning while a drone hit the plant’s training center.
In a news release today, IAEA director general Rafael Mariano Grossi said this is the third drone to target the training center, located just outside the site perimeter, so far this year. He called for an immediate end to drones being flown over or near nuclear facilities.
Minsuk Seo, Shukai Yu, Venkatraman Gopalan, A. Leigh Winfrey
Fusion Science and Technology | Volume 81 | Number 2 | February 2025 | Pages 118-131
Research Article | doi.org/10.1080/15361055.2024.2343972
Articles are hosted by Taylor and Francis Online.
Tungsten and tungsten carbide were damaged in ambient air with varying incident angles (0, 30, 45, and 60 deg) for approximately 5000 shots. The goal of these experiments was to observe the macroscopic surface modification in tungsten and tungsten carbide surfaces in harsh environments. At low pulse numbers (one to eight laser pulses on the same spot), tungsten aerial surface damage was less than tungsten carbide damage; however, at very high pulse numbers (5000), the opposite was true. Surface damage was mostly in the form of craters that were near circular at low impact angles and became more elongated at higher laser pulse impact angles. On the tungsten surface, a cluster of tungsten oxide debris formed. During laser exposure, laser-induced periodic surface structures and grooves were formed, and their geometries varied with laser intensity and laser impact angle. The period of laser-induced surface changes increased as the incident angle increased for both tungsten and tungsten carbide surfaces. More mass was lost in tungsten than tungsten carbide, which agrees with the morphological responses.