ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
A. A. Belokurov, L. G. Askinazi, V. K. Gusev, E. O. Kiselev, G. S. Kurskiev, A. V. Petrov, Yu. V. Petrov, A. M. Ponomarenko, S. Yu. Tolstyakov, A. Yu. Yashin
Fusion Science and Technology | Volume 81 | Number 2 | February 2025 | Pages 109-117
Research Article | doi.org/10.1080/15361055.2024.2362530
Articles are hosted by Taylor and Francis Online.
The intermediate mode between the ohmic, or low confinement (L-mode), and the increased confinement (H-mode) regimes, or the so called I-phase, which is characterized by the existence of zonal flows in the form of limit cycle oscillations (LCOs), was observed on the Globus-M tokamak. Depending on the LCO frequency, the I-phase resulted in either a transition to H-mode or back to L-mode. The possibility of L-I-H transition initiation induced by LCOs and the effect of LCO frequency were studied by means of numerical modeling of the density profile evolution, taking into account turbulence suppression by the inhomogeneous radial electric field. The modeling results show that lower LCO frequency could be a factor facilitating the L-H transition, whereas higher frequency LCOs are more likely to cause the backward transition to L-mode. The results are in qualitative agreement with the results of the studies of geodesic acoustic mode (GAM)–initiated L-H transition in the TUMAN-3M tokamak, where a lower GAM frequency was found to be beneficial for L-H transition initiation.