ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Emil Mammadzada, Ayhan Kara
Fusion Science and Technology | Volume 81 | Number 2 | February 2025 | Pages 99-108
Research Article | doi.org/10.1080/15361055.2024.2347685
Articles are hosted by Taylor and Francis Online.
The global energy crisis and climate change pose significant challenges for the future of humankind. To address these issues, clean energy sources are being promoted, with nuclear energy being an effective solution. The development of fission reactors and the promising advancements in fusion reactor technology provide potential solutions. However, challenges related to security and costs remain. This study focuses on the interaction between 55Mn and protons at 14.7 MeV using Monte Carlo simulations. Various Monte Carlo codes, including TALYS-1.96, GEANT4 (for GEometry ANd Tracking), PHITS-3.31 (for Particle and Heavy Ion Transport Code System), SRIM-2013 (for Stopping and Range of Ions in Matter), and ATIMA v1 41 (for ATomic Interaction with MAtter), were employed to investigate different interaction mechanisms. The research aims to understand the impact of these interactions on reactor performance, particularly in the context of the fusion facility. Manganese-containing steels play a crucial role in enhancing efficiency, durability, and safety in fusion reactors. The findings contribute to ongoing research and development activities in the field of nuclear energy.