ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Samaneh Fazelpour, Hossein Sadeghi, Amir Chakhmachi, Morteza Habibi
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 82-98
Note | doi.org/10.1080/15361055.2024.2326378
Articles are hosted by Taylor and Francis Online.
The influence of the magnetic field configuration on the performance of a helicon-based negative ion source is investigated with simulation experiments. Using COMSOL Multiphysics software, a three-dimensional simulation model for a negative ion source, based on a helicon plasma source, is presented in two magnetic field configurations: uniform and nonuniform configurations.
The helicon plasma source employed a Nagoya-type antenna to apply radio-frequency (RF) power at a frequency of 13.56 MHz. The injected gas is hydrogen with a flow of 10 standard cubic centimeters per minute. Using a three-dimensional model, helicon wave propagation in the presence of a magnetic filter and the energy absorption mechanism in the helicon system are investigated. In this context, in the presence of the two magnetic field configurations, the influence of the important parameters’ working pressure and RF power on the optimization of negative ion production under volume mode is studied. Six electromagnetic coils at the same current are used for producing the magnetic field in both cases of uniform and nonuniform configurations. The variation of the electron density and electron temperature, in both regions of driver and expansion, are calculated and represented with respect to the different power and the gas pressure.
The simulation results of the negative ion density in the expansion region for the uniform and nonuniform magnetic field configurations are compared. The results indicate that at the same applied current of coils, the negative ion density in the presence of the nonuniform magnetic field is about 1.75 times higher than the negative ion density of the uniform case. Moreover, the results show that the negative ion density is decreased by decreasing the magnetic field of the driver region in the nonuniform cases.