ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Samaneh Fazelpour, Hossein Sadeghi, Amir Chakhmachi, Morteza Habibi
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 82-98
Note | doi.org/10.1080/15361055.2024.2326378
Articles are hosted by Taylor and Francis Online.
The influence of the magnetic field configuration on the performance of a helicon-based negative ion source is investigated with simulation experiments. Using COMSOL Multiphysics software, a three-dimensional simulation model for a negative ion source, based on a helicon plasma source, is presented in two magnetic field configurations: uniform and nonuniform configurations.
The helicon plasma source employed a Nagoya-type antenna to apply radio-frequency (RF) power at a frequency of 13.56 MHz. The injected gas is hydrogen with a flow of 10 standard cubic centimeters per minute. Using a three-dimensional model, helicon wave propagation in the presence of a magnetic filter and the energy absorption mechanism in the helicon system are investigated. In this context, in the presence of the two magnetic field configurations, the influence of the important parameters’ working pressure and RF power on the optimization of negative ion production under volume mode is studied. Six electromagnetic coils at the same current are used for producing the magnetic field in both cases of uniform and nonuniform configurations. The variation of the electron density and electron temperature, in both regions of driver and expansion, are calculated and represented with respect to the different power and the gas pressure.
The simulation results of the negative ion density in the expansion region for the uniform and nonuniform magnetic field configurations are compared. The results indicate that at the same applied current of coils, the negative ion density in the presence of the nonuniform magnetic field is about 1.75 times higher than the negative ion density of the uniform case. Moreover, the results show that the negative ion density is decreased by decreasing the magnetic field of the driver region in the nonuniform cases.