ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Samaneh Fazelpour, Hossein Sadeghi, Amir Chakhmachi, Morteza Habibi
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 82-98
Note | doi.org/10.1080/15361055.2024.2326378
Articles are hosted by Taylor and Francis Online.
The influence of the magnetic field configuration on the performance of a helicon-based negative ion source is investigated with simulation experiments. Using COMSOL Multiphysics software, a three-dimensional simulation model for a negative ion source, based on a helicon plasma source, is presented in two magnetic field configurations: uniform and nonuniform configurations.
The helicon plasma source employed a Nagoya-type antenna to apply radio-frequency (RF) power at a frequency of 13.56 MHz. The injected gas is hydrogen with a flow of 10 standard cubic centimeters per minute. Using a three-dimensional model, helicon wave propagation in the presence of a magnetic filter and the energy absorption mechanism in the helicon system are investigated. In this context, in the presence of the two magnetic field configurations, the influence of the important parameters’ working pressure and RF power on the optimization of negative ion production under volume mode is studied. Six electromagnetic coils at the same current are used for producing the magnetic field in both cases of uniform and nonuniform configurations. The variation of the electron density and electron temperature, in both regions of driver and expansion, are calculated and represented with respect to the different power and the gas pressure.
The simulation results of the negative ion density in the expansion region for the uniform and nonuniform magnetic field configurations are compared. The results indicate that at the same applied current of coils, the negative ion density in the presence of the nonuniform magnetic field is about 1.75 times higher than the negative ion density of the uniform case. Moreover, the results show that the negative ion density is decreased by decreasing the magnetic field of the driver region in the nonuniform cases.