ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Yahya Sadeghi, Hossain Rasouli, Farid Sedighi, Mehdi Jafargholi, Samaneh Yarmahmoodi, Hojjat Babaee
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 73-81
Research Article | doi.org/10.1080/15361055.2024.2316989
Articles are hosted by Taylor and Francis Online.
The main acting parameters in tokamak plasma experiments, such as currents and electric and magnetic fields, are present inside and outside the plasma volume. To analyze the changes in the shape of tokamak plasma, it is necessary to use experimental data obtained from magnetic measurements. Until recently, a four-digit magnetic probe (MP) was used for qualitative analysis of the magnetic field, but its accuracy was low, and it could not be practically used as a diagnostic system. Following the Magnetic Confinement Group, Tokamak Laboratories’ approach to optimize and improve the measurement of plasma parameters, the use of a richer array of MPs to accurately measure changes in the magnetic field and identify plasma parameters in the Alvand tokamak was considered. In order to upgrade the magnetic diagnostic system, two MP arrays were designed and manufactured. Each array contains 12 poloidal and radial probes. The MPs of each array were attached to Mylar belts and mounted on the vacuum vessel of the tokamak. In addition, an integrator unit was designed and installed as a magnetic diagnostic subsystem. The conducted research involved the MP and calibration setup followed by preliminary tests of the array probe.