ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yahya Sadeghi, Hossain Rasouli, Farid Sedighi, Mehdi Jafargholi, Samaneh Yarmahmoodi, Hojjat Babaee
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 73-81
Research Article | doi.org/10.1080/15361055.2024.2316989
Articles are hosted by Taylor and Francis Online.
The main acting parameters in tokamak plasma experiments, such as currents and electric and magnetic fields, are present inside and outside the plasma volume. To analyze the changes in the shape of tokamak plasma, it is necessary to use experimental data obtained from magnetic measurements. Until recently, a four-digit magnetic probe (MP) was used for qualitative analysis of the magnetic field, but its accuracy was low, and it could not be practically used as a diagnostic system. Following the Magnetic Confinement Group, Tokamak Laboratories’ approach to optimize and improve the measurement of plasma parameters, the use of a richer array of MPs to accurately measure changes in the magnetic field and identify plasma parameters in the Alvand tokamak was considered. In order to upgrade the magnetic diagnostic system, two MP arrays were designed and manufactured. Each array contains 12 poloidal and radial probes. The MPs of each array were attached to Mylar belts and mounted on the vacuum vessel of the tokamak. In addition, an integrator unit was designed and installed as a magnetic diagnostic subsystem. The conducted research involved the MP and calibration setup followed by preliminary tests of the array probe.