ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Haihong Huang, Zhao Chen, Haixin Wang
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 61-72
Research Article | doi.org/10.1080/15361055.2024.2339666
Articles are hosted by Taylor and Francis Online.
The Experimental Advanced Superconducting Tokamak (EAST) fast control power supply (FCPS) is an important device for controlling the vertical displacement of plasma during the nuclear fusion power generation process, adopting a multiple H-bridge invertor branch parallel operation structure to output total current. At the beginning of each shot of plasma discharge, FCPS works in open-loop voltage control mode (VCM) or closed-loop current control mode (CCM) determined by the plasma control system to output current for exciting the load coil, to achieve plasma vertical displacement control. VCM has the characteristics of fast dynamic response speed but poor consistency of branch current and insufficient branch current control accuracy and stability because of open-loop control. CCM has the characteristics of high branch current control accuracy but poor dynamic response and robustness because of control delay and control parameters determined based on engineering experience. To achieve fast and robust control, an improved voltage control method (IVCM) is proposed by combining the advantages of VCM and CCM. In the beginning of establishing the output current, FCPS operates in VCM, and rapid establishment of the output current is ensured. After the output current rapidly increases to the critical value, closed-loop current control is added to VCM to ensure the accuracy of output current control. In closed-loop current control, linear super-twisting sliding mode control is designed to achieve fast and robust control, ensuring good consistency and fast dynamic response performance of each branch current. Simulations and experiments verify that the designed IVCM has better compatibility characteristics in output current stability, control accuracy, and consistency of each branch current compared to VCM.