ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Tapan Patel, Hardik D. Vyas, M. R. Jana, P. Chaudhuri, U. K. Baruah
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 45-60
Research Article | doi.org/10.1080/15361055.2024.2332028
Articles are hosted by Taylor and Francis Online.
This article outlines the development and examination of the properties of an asymmetrical dissimilar metal joint produced using friction welding (FW). Friction welding involving dissimilar materials, specifically a 50 mm (length) × 45 mm (width) × 20-mm (thickness) electrolytic tough pitch copper (ETP-Cu) plate and a 12.5-mm-diameter SS304L rod, was carried out. The assessment of the asymmetrically welded components encompassed ultrasonic testing, high-pressure helium gas testing, leak testing, tensile testing, scanning electron microscopy, optical microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, hardness measurements, and elemental mapping via X-ray. Significantly, there was an observed increase in tensile strength, resulting in a joint efficiency of 86.50% compared to the ETP-Cu base material, following FW between an asymmetric ETP-Cu plate and SS304L rod. The study unveiled notable variations in the microstructure near the joint interface on the ETP-Cu material side. Intermetallic compounds, such as FeCu4 and Cu9Si phases, were detected within the reaction layer at the interface between ETP-Cu and SS304L, exhibiting a variable thickness ranging from 30 to 50 μm.