ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Bamidele Ebiwonjumi, Stefano Segantin, Ethan Peterson
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 18-31
Research Article | doi.org/10.1080/15361055.2024.2323747
Articles are hosted by Taylor and Francis Online.
The Fusion Neutron Source (FNS) clean benchmark experiments on tungsten, vanadium, and beryllium assemblies from the SINBAD (Shielding Integral Benchmark Archive and Database) are analyzed to experimentally validate OpenMC (version 0.14.1-dev) fusion neutronics capabilities. The assemblies were irradiated with a 14-MeV deuterium-tritium neutron source. Neutron spectra, photon spectra, reaction rates, gamma heating rates (GHRs), and tritium production rates (TPRs) are compared to measured data in the experimental assemblies and MCNP-6.2 results.
In the tungsten case, slight overestimations of the experimental data were observed in the neutron spectra, and the photon spectra agreed well with the experiments. Most of the GHRs agreed with the measured data within the range of experimental uncertainty in the tungsten and vanadium assemblies. In the vanadium assembly, the calculated neutron spectra underestimated the experiments in the low energy region while the photon spectra were well calculated when compared to experiments.
The most noticeable discrepancies with experimental data in the gamma heating were observed at detector positions closest to the source. For the reaction rates, notable discrepancies with experimental data were seen at the front and rear of the assemblies. Compared to experiments, the OpenMC neutron spectra were well predicted in the beryllium assembly, whereas the calculated fission reaction rate and TPRs overestimated the experiments, an observation similar to that which has been reported by other authors.
The average, overall calculation-to-experiment ratio (C/E) over nine TPR and seven GHR measurements were 1.03 ± 0.20 and 0.95 ± 0.14, respectively. In the case of verification, the OpenMC results of the benchmark calculations indicated comparable accuracy to MCNP-6.2. In general, the validation exercise showed that OpenMC can be used to analyze the fusion neutronics shielding benchmark problems.