ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Bamidele Ebiwonjumi, Stefano Segantin, Ethan Peterson
Fusion Science and Technology | Volume 81 | Number 1 | January 2025 | Pages 18-31
Research Article | doi.org/10.1080/15361055.2024.2323747
Articles are hosted by Taylor and Francis Online.
The Fusion Neutron Source (FNS) clean benchmark experiments on tungsten, vanadium, and beryllium assemblies from the SINBAD (Shielding Integral Benchmark Archive and Database) are analyzed to experimentally validate OpenMC (version 0.14.1-dev) fusion neutronics capabilities. The assemblies were irradiated with a 14-MeV deuterium-tritium neutron source. Neutron spectra, photon spectra, reaction rates, gamma heating rates (GHRs), and tritium production rates (TPRs) are compared to measured data in the experimental assemblies and MCNP-6.2 results.
In the tungsten case, slight overestimations of the experimental data were observed in the neutron spectra, and the photon spectra agreed well with the experiments. Most of the GHRs agreed with the measured data within the range of experimental uncertainty in the tungsten and vanadium assemblies. In the vanadium assembly, the calculated neutron spectra underestimated the experiments in the low energy region while the photon spectra were well calculated when compared to experiments.
The most noticeable discrepancies with experimental data in the gamma heating were observed at detector positions closest to the source. For the reaction rates, notable discrepancies with experimental data were seen at the front and rear of the assemblies. Compared to experiments, the OpenMC neutron spectra were well predicted in the beryllium assembly, whereas the calculated fission reaction rate and TPRs overestimated the experiments, an observation similar to that which has been reported by other authors.
The average, overall calculation-to-experiment ratio (C/E) over nine TPR and seven GHR measurements were 1.03 ± 0.20 and 0.95 ± 0.14, respectively. In the case of verification, the OpenMC results of the benchmark calculations indicated comparable accuracy to MCNP-6.2. In general, the validation exercise showed that OpenMC can be used to analyze the fusion neutronics shielding benchmark problems.