ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sebahattin Ünalan, S. Orhan Akansu
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 109-127
Technical Paper | doi.org/10.13182/FST98-A57
Articles are hosted by Taylor and Francis Online.
Effects on the neutronic performance of the hybrid blanket rejuvenating light water reactor and CANDU spent fuels of moderators (Be, C, and D2O) inserted between the fusion chamber and the fissile zone of deuterium-deuterium and deuterium-tritium-driven hybrid reactor were investigated to obtain the best rejuvenation performance and more energy production. The calculations were carried out for different thicknesses of the moderator zone (DR). In addition, to eliminate local heating, the analysis was also repeated for reduced radius of the spent fuel rods in the first and the second fuel rows of the fissile zone.It was observed that while Be and D2O improved the rejuvenation performance and energy production, C had a negligible effect. All moderators decreased the tritium breeding capability of the hybrid reactor with increasing DR values. To breed enough tritium (tritium breeding ratio: >1.05), the moderator zone thickness was determined to be smaller than DR = 6 cm as an average value. The rejuvenation performance reached a maximal value of DR = ~4 cm, increased two times in comparison with the blanket without moderator material, although the energy production was almost constant. However, to produce more energy, DR has to be ~20 cm. The energy releasing in the hybrid blanket with DR [approximately equal to] 20 cm is nearly two times that in the hybrid blanket without moderator material. The high energy production caused the fuel rod temperatures in the first fuel row of the fissile zone to reach the melting point. Hence, as a positive result, radiation damage in the first wall did not vary. However, the melting problem was eliminated by reducing the radius of the fuel rods in the first and second fuel rows, and the neutronic performance of the hybrid reactor has not been affected by this radius reduction.