ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sebahattin Ünalan, S. Orhan Akansu
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 109-127
Technical Paper | doi.org/10.13182/FST98-A57
Articles are hosted by Taylor and Francis Online.
Effects on the neutronic performance of the hybrid blanket rejuvenating light water reactor and CANDU spent fuels of moderators (Be, C, and D2O) inserted between the fusion chamber and the fissile zone of deuterium-deuterium and deuterium-tritium-driven hybrid reactor were investigated to obtain the best rejuvenation performance and more energy production. The calculations were carried out for different thicknesses of the moderator zone (DR). In addition, to eliminate local heating, the analysis was also repeated for reduced radius of the spent fuel rods in the first and the second fuel rows of the fissile zone.It was observed that while Be and D2O improved the rejuvenation performance and energy production, C had a negligible effect. All moderators decreased the tritium breeding capability of the hybrid reactor with increasing DR values. To breed enough tritium (tritium breeding ratio: >1.05), the moderator zone thickness was determined to be smaller than DR = 6 cm as an average value. The rejuvenation performance reached a maximal value of DR = ~4 cm, increased two times in comparison with the blanket without moderator material, although the energy production was almost constant. However, to produce more energy, DR has to be ~20 cm. The energy releasing in the hybrid blanket with DR [approximately equal to] 20 cm is nearly two times that in the hybrid blanket without moderator material. The high energy production caused the fuel rod temperatures in the first fuel row of the fissile zone to reach the melting point. Hence, as a positive result, radiation damage in the first wall did not vary. However, the melting problem was eliminated by reducing the radius of the fuel rods in the first and second fuel rows, and the neutronic performance of the hybrid reactor has not been affected by this radius reduction.