ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Fumito Okino, Yukinori Hamaji, Teruya Tanaka, Juro Yagi
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 1060-1069
Research Article | doi.org/10.1080/15361055.2024.2312055
Articles are hosted by Taylor and Francis Online.
The axial concentration of deuterium by dispersion in a circulating liquid lithium-lead (LiPb) loop was analyzed and experimentally verified. In previous fusion blanket studies, the tritium transport rate in flowing LiPb was treated by convection a priori; i.e., the dispersion effect was negligible. In contrast, Taylor dispersion theory shows conflicting results, exhibiting axial transport enhancement via convective flow. In the current paper, the experimental setup consists of a deuterium dissolving tube that substitutes for tritium breeding and a deuterium concentration monitor by LiPb droplets in a vacuum with four nozzles of ϕ = 1.0 mm. The released deuterium mass flux from the droplets was measured using a quadrupole mass spectrometer. An electromagnetic pump circulated 49 L of LiPb at 350°C at a rate between 0.15 and 0.3 L∙min–1 with the corresponding Re number between 600 and 1000, i.e., in the laminar flow range. The dispersion coefficient was analyzed by measuring the temporal distortion of the deuterium concentration profile. The obtained axial dispersion coefficients of dissolved deuterium in LiPb were between 4.6 × 10–2 and 1.2 × 10–1 (m2∙s–1) and approximately seven orders of magnitude greater than those under static conditions. The results agreed with the Taylor dispersion theory, which studied the mass transport enhancement by convection. The applicability of Taylor’s theory to the deuterium flow in liquid LiPb is suggested, whereas the Prandtl number was three orders of magnitude lower and the Schmidt number was one order of magnitude higher than that of the water.