ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
V. Gayathri Devi, Kannan Aravamudan, Amit Sircar
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 1031-1044
Research Article | doi.org/10.1080/15361055.2023.2284409
Articles are hosted by Taylor and Francis Online.
A computational investigation of Cu-, Ni-, and Ag-introduced ZSM-5 as potential hydrogen storage materials for nuclear fusion energy systems is performed. Among the 24 distinct tetrahedral sites of the monoclinic phase of ZSM-5, systematic periodic density functional theory (DFT) computations have been carried out on 15 experimentally identified T sites that show clear Al site preference and stability in high Si ZSM-5. Adsorption energies estimated from DFT studies have revealed that the T sites in the sinusoidal channels T4 and T10 are the most stable for including all three metal ions. Hence, these should also be considered as potential active sites for dihydrogen binding investigations in addition to the common T12 site in the intersection.
The average hydrogen binding energies at these representative T sites were −79 to −45 kJ/mol, which correlates well with both the metal-H2 distance and H-H bond elongation distance. The computed hydrogen bond stretching frequency values were in the 3300 to 3755 cm−1 range upon adsorption of H2 onto the Ni, Cu, and Ag, indicating Kubas-type dihydrogen complex formation. The evidence for dihydrogen binding was also obtained from investigating the σ donation and back donation between the metal ion valence orbitals and the H2σ, H2σ* orbitals through projected density of states and natural bond order analysis. Our analysis indicates that Ni is better stabilized in the framework sites and is considered a potential candidate for dihydrogen binding.