ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
R. Pampin, A. Cubi, N. Taylor, M. Fabbri, P. Martinez-Albertos, P. Sauvan, Y. LeTonqueze
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 1012-1023
Research Article | doi.org/10.1080/15361055.2023.2278375
Articles are hosted by Taylor and Francis Online.
Photoneutrons may be generated in beryllium by energetic gamma rays via the reaction 9Be(γ,n)8Be. In ITER, the beryllium layer of the first wall may be the source of such photoneutrons. During plasma operation, these are of insignificant intensity compared with D-T neutrons from the plasma, but after shutdown, photoneutrons produced by decay gammas from neutron-activated material may be significant enough to impact sensitive electronic components in diagnostic or remote handling equipment that would not otherwise be exposed to neutrons.
Studies have been performed to characterize the expected photoneutron source and to evaluate the fluxes arising in detailed three-dimensional models of the ITER tokamak. The results show photoneutron fluxes approaching 105 n/cm2·s within the vessel and up to 103 n/cm2·s elsewhere within the bioshield 14 days after shutdown. When first-wall panels are being transported to the Hot Cell Facility after irradiation, a photoneutron flux exceeding 104 n/cm2·s within the transfer cask is predicted 21 days after shutdown. The peak values in the surrounding building are between 102 and 103 n/cm2·s at the same time.