ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
R. Pampin, A. Cubi, N. Taylor, M. Fabbri, P. Martinez-Albertos, P. Sauvan, Y. LeTonqueze
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 1012-1023
Research Article | doi.org/10.1080/15361055.2023.2278375
Articles are hosted by Taylor and Francis Online.
Photoneutrons may be generated in beryllium by energetic gamma rays via the reaction 9Be(γ,n)8Be. In ITER, the beryllium layer of the first wall may be the source of such photoneutrons. During plasma operation, these are of insignificant intensity compared with D-T neutrons from the plasma, but after shutdown, photoneutrons produced by decay gammas from neutron-activated material may be significant enough to impact sensitive electronic components in diagnostic or remote handling equipment that would not otherwise be exposed to neutrons.
Studies have been performed to characterize the expected photoneutron source and to evaluate the fluxes arising in detailed three-dimensional models of the ITER tokamak. The results show photoneutron fluxes approaching 105 n/cm2·s within the vessel and up to 103 n/cm2·s elsewhere within the bioshield 14 days after shutdown. When first-wall panels are being transported to the Hot Cell Facility after irradiation, a photoneutron flux exceeding 104 n/cm2·s within the transfer cask is predicted 21 days after shutdown. The peak values in the surrounding building are between 102 and 103 n/cm2·s at the same time.