ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Yang Zhou, Ming Jiang, Xiaolin Yuan, Guizhong Zuo, Yue Chen, Jilei Hou, Kai Jia, Peng Liu, Zhixin Cheng
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 1001-1011
Research Article | doi.org/10.1080/15361055.2023.2275089
Articles are hosted by Taylor and Francis Online.
A molecular pump is a high vacuum acquisition piece of equipment that provides a clean vacuum environment for the Experimental Advanced Superconducting Tokamak (EAST) device. Its running state affects the smooth development of the EAST experiment. Because of fatigue degradation of internal components of the molecular pump, vacuum leakage may occur during long-term operation, causing secondary hazards to the device. In order to improve the accuracy of molecular pump fault prediction, based on the long short-term memory network (LSTM), the deep long short-term memory network (DE-LSTM) and the bidirectional long short-term memory network (Bi-LSTM) are combined. The deep bidirectional long short-term memory network (DE-Bi-LSTM) algorithm is proposed, and the piecewise linear degradation model is introduced to predict fault of the molecular pump. By collecting the vibration signals leaked in the atmosphere and running to the fault time series on the destructive test platform simulating molecular pump fault, data were extracted in the time domain. Finally, the obtained feature vector set was used as the input of the DE-Bi-LSTM algorithm through data standardization to train the model and realize the prediction of molecular pump fault. The experimental results show that the proposed method is optimal to LSTM, DE-LSTM, and Bi-LSTM in predicting performance.