ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yang Zhou, Ming Jiang, Xiaolin Yuan, Guizhong Zuo, Yue Chen, Jilei Hou, Kai Jia, Peng Liu, Zhixin Cheng
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 1001-1011
Research Article | doi.org/10.1080/15361055.2023.2275089
Articles are hosted by Taylor and Francis Online.
A molecular pump is a high vacuum acquisition piece of equipment that provides a clean vacuum environment for the Experimental Advanced Superconducting Tokamak (EAST) device. Its running state affects the smooth development of the EAST experiment. Because of fatigue degradation of internal components of the molecular pump, vacuum leakage may occur during long-term operation, causing secondary hazards to the device. In order to improve the accuracy of molecular pump fault prediction, based on the long short-term memory network (LSTM), the deep long short-term memory network (DE-LSTM) and the bidirectional long short-term memory network (Bi-LSTM) are combined. The deep bidirectional long short-term memory network (DE-Bi-LSTM) algorithm is proposed, and the piecewise linear degradation model is introduced to predict fault of the molecular pump. By collecting the vibration signals leaked in the atmosphere and running to the fault time series on the destructive test platform simulating molecular pump fault, data were extracted in the time domain. Finally, the obtained feature vector set was used as the input of the DE-Bi-LSTM algorithm through data standardization to train the model and realize the prediction of molecular pump fault. The experimental results show that the proposed method is optimal to LSTM, DE-LSTM, and Bi-LSTM in predicting performance.