ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yang Zhou, Ming Jiang, Xiaolin Yuan, Guizhong Zuo, Yue Chen, Jilei Hou, Kai Jia, Peng Liu, Zhixin Cheng
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 1001-1011
Research Article | doi.org/10.1080/15361055.2023.2275089
Articles are hosted by Taylor and Francis Online.
A molecular pump is a high vacuum acquisition piece of equipment that provides a clean vacuum environment for the Experimental Advanced Superconducting Tokamak (EAST) device. Its running state affects the smooth development of the EAST experiment. Because of fatigue degradation of internal components of the molecular pump, vacuum leakage may occur during long-term operation, causing secondary hazards to the device. In order to improve the accuracy of molecular pump fault prediction, based on the long short-term memory network (LSTM), the deep long short-term memory network (DE-LSTM) and the bidirectional long short-term memory network (Bi-LSTM) are combined. The deep bidirectional long short-term memory network (DE-Bi-LSTM) algorithm is proposed, and the piecewise linear degradation model is introduced to predict fault of the molecular pump. By collecting the vibration signals leaked in the atmosphere and running to the fault time series on the destructive test platform simulating molecular pump fault, data were extracted in the time domain. Finally, the obtained feature vector set was used as the input of the DE-Bi-LSTM algorithm through data standardization to train the model and realize the prediction of molecular pump fault. The experimental results show that the proposed method is optimal to LSTM, DE-LSTM, and Bi-LSTM in predicting performance.