ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 984-1000
Research Article | doi.org/10.1080/15361055.2023.2273041
Articles are hosted by Taylor and Francis Online.
Relating to the design of liquid-metal blankets in a fusion reactor, numerical calculations have been performed on liquid-metal magnetohydrodynamic (MHD) flows in rectangular ducts with sudden expansions. Conservation equations of fluid mass and fluid momentum, together with the Poisson equation for electrical potential, have been solved numerically. The numerical calculations have been performed for Hartmann (Ha) numbers up to the order of 10000 and expansion ratios up to 4. The pressure loss through the expansion has been estimated by the loss coefficient ζ divided by the interaction parameter N, i.e., ζ/N. The loss coefficient ζ/N through the expansion parallel to the magnetic field is much larger than that through the expansion perpendicular to the magnetic field. The loss coefficient ζ/N increases consistently with the expansion ratio. The loss coefficient ζ/N does not change very much with the interaction parameter N and the wall conductance ratio.