ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Jinwen Zhang, Wei Zhao, Zuowei Wen, Lei Feng, Li Zhao, Lingfeng Wei, Xiang Chen, Guoliang Yuan
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 976-983
Research Article | doi.org/10.1080/15361055.2023.2272538
Articles are hosted by Taylor and Francis Online.
Runaway electrons (REs) generated during disruptions pose a significant safety threat to tokamaks, as they can melt and damage the plasma-facing components (PFCs). Therefore, studying RE behavior is crucial for fusion devices. The interaction between REs and the first wall/PFCs results in the emission of high-energy X-rays, known as bremsstrahlung. To investigate RE behavior, it is necessary to quantitatively evaluate the emission of hard X-rays. A real-time hard X-ray spectrometer, utilizing a LaBr3 detector, has been successfully developed for studying REs on the HL-2M tokamak. This spectrometer has a counting rate capability reaching 3 MHz, with an energy resolution of 3.3% at 662 keV (137Cs). The time resolution for energy spectrums is as short as 1 ms. During the HL-2M discharge, observations were made on the hard X-ray energy spectrum, and by analyzing the spectrum within the energy range of 250 keV to 750 keV, the temperature of the corresponding REs was deduced.