ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Haihong Huang, Zhao Chen, Haixin Wang
Fusion Science and Technology | Volume 80 | Number 8 | November 2024 | Pages 941-959
Research Article | doi.org/10.1080/15361055.2023.2271226
Articles are hosted by Taylor and Francis Online.
To quickly output sufficient current for plasma excitation control, parallel operation of a structure of multiple branches is adopted in the Experimental Advanced Superconducting Tokamak (EAST) fast control power supply. During the process of parallel operation of multiple branches in engineering, a larger inductance current sharing reactor is used to suppress the circulating current for the branches, which reduces the dynamic response speed of the output current and increases economic costs. In order to achieve cost savings and improve the dynamic response speed of the output current, the parallel branch current model of the EAST fast control power supply is analyzed, and the current of each branch is reconstructed into two parts: the current flowing to the load end and the circulating current flowing to other branches. Without changing the circuit structure and increasing the additional complex communication system for each branch, observation of the current flowing to the load end from each branch is achieved. Based on the observed current, a super-twisting sliding mode controller (STSMC) is designed to suppress the circulating current flowing through branches. To realize fast output of the branch current and circulating current suppression for the branches, a new STSMC with a linear term and parameter adaptive structure is designed, speeding up the convergence rate of the whole control system. The linear term and designed parameter adaptive structure based on the sliding mode system status ensure fast convergence speed and excellent control performance of the system. Simulation and experiments show that the designed control method can achieve fast output current control for each branch and that the tracking performance of the total output current is good. While reducing the inductance of the current sharing reactor, the circulating current for the branches is effectively suppressed compared with traditional control methods. The proposed method has great significance in cost savings and performance improvement in engineering practice applications.