ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
F. Sano, T. Mizuuchi, K. Nagasaki, H. Okada, S. Kobayashi, K. Kondo, K. Hanatani, Y. Nakamura, M. Nakasuga, S. Besshou, S. Yamamoto, M. Yokoyama, Y. Suzuki, Y. Manabe, H. Shidara, T. Takamiya, Y. Ohno, Y. Nishioka, H. Yukimoto, K. Takahashi, Y. Fukagawa, H. Kawazome, M. Kaneko, S. Tsuboi, S. Nakazawa, S. Nishio, M. Yamada, Y. Ijiri, T. Senju, K. Yaguchi, K. Sakamoto, K. Tohshi, M. Shibano, V. Tribaldos, F. Tabares, T. Obiki
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 288-298
Technical Papers | Stellarators | doi.org/10.13182/FST04-A567
Articles are hosted by Taylor and Francis Online.
The H-mode transition properties of 70-GHz, 0.4-MW electron cyclotron heating (ECH) plasmas in Heliotron J have been studied with special reference to their magnetic configuration dependences, such as the edge iota dependences. Two edge iota windows for the H-mode transition were observed to be (a) 0.54 < (a)/2 < 0.56 in separatrix discharge plasmas and (b) 0.62 < (a)/2 < 0.63 in partial wall-limiter discharge plasmas if a certain threshold line-averaged electron density ([overbar]ne = 1.2-1.6 × 1019 m-3) is achieved, where (a) is the vacuum edge iota value and a is the plasma minor radius, respectively. A strong dependence of the quality of the H-mode on the edge topology conditions was revealed. The energy confinement time for the separatrix discharge plasmas was found to be enhanced beyond the normal ISS95 scaling in the transient H-mode phase, being 50% longer than that in the "before transition" phase. The window characteristics are discussed on the basis of the calculated geometrical poloidal viscous damping rate coefficient in a collisional plasma, indicating that the behavior of the viscous damping rate coefficient alone could not explain the observed characteristics. The bootstrap current properties of ECH plasmas and the relevant electron cyclotron current drive experimental results are also discussed.