ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
M. W. Paris, M. B. Chadwick
Fusion Science and Technology | Volume 80 | Number 1 | October 2024 | Pages S110-S119
Research Article | doi.org/10.1080/15361055.2024.2336813
Articles are hosted by Taylor and Francis Online.
The term “Bretscher state” may not be as familiar as “Hoyle state,” but its anthropic importance cannot be overstated. In Big Bang nucleosynthesis, the deuterium-tritium (DT) fusion reaction 3H He, enhanced by the 3/2+ resonance due to the Bretscher state, is responsible for % of primordial 4He. While this fact has been known for decades, it has not been widely appreciated, and we recently proposed that its significance be commemorated by naming the 3/2+ state after Egon Bretscher, its discoverer. The importance of the resonant nature of the DT fusion reaction has been amplified by recent activities related to the production and use of terrestrial fusion including recent, net gain shots at the National Ignition Facility. Here, we aim to highlight the anthropic importance of the 4He-producing DT reaction that plays such a prominent role in models of nucleosynthetic processes occurring in the early universe. This primordial helium serves as a source for the subsequent creation of % of the carbon, 12C and other heavier elements that comprise a substantial fraction of the human body. Further studies are required to determine a better characterization of the amount of 12C than this lower limit of 25%. Some scenarios of core stellar nucleosynthetic yield of 12C suggest that even higher percentages of carbon from primordial helium are possible.