ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
J. P. Lestone, S. Finch, F. Friesen, E. Mancil, W. Tornow, J. B. Wilhelmy, M. B. Chadwick
Fusion Science and Technology | Volume 80 | Number 1 | October 2024 | Pages S89-S98
Research Article | doi.org/10.1080/15361055.2024.2342484
Articles are hosted by Taylor and Francis Online.
In order to benchmark methods used to calculate reaction-in-flight fusion reactions in inertial confinement fusion and address issues related to the first claimed observation of d(t,n)α reactions in 1938, secondary d(t,n)α reactions have been observed following d(d,p)t reactions in deuterium gas. A pulsed 200-nA, 2.2-MeV deuterium beam from the Triangle Universities Nuclear Laboratory FN tandem accelerator was injected into a cylindrical multiatmosphere deuterium gas target. The incident beam traversed along the target cylinder’s 3-cm symmetry axis after its passage through a Havar entrance foil. Two different Havar foil thicknesses were used to obtain 1.5- and 0.6-MeV deuteron beams entering the deuterium cell. The cylinder’s radius was 2 cm to allow for d(d,p)t tritons emitted perpendicular to the beam to range out in the deuterium gas. The neutron emission from the cell was observed via its time of flight to a liquid scintillator placed at various angles to the beam direction, at a distance of 243 cm. Pulse-shape-discrimination techniques were used to separate neutron and gamma-ray signals seen in the liquid scintillator. The observed probability of ~2 × 10–4 for inducing secondary d(t,n)α fusion in the gas cell per d(d,p)t reaction is consistent with theoretical expectations.