ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
J. P. Lestone, C. R. Bates, M. B. Chadwick, M. W. Paris
Fusion Science and Technology | Volume 80 | Number 1 | October 2024 | Pages S72-S88
Research Article | doi.org/10.1080/15361055.2024.2334973
Articles are hosted by Taylor and Francis Online.
While studying d(d,n)3He fusion in 1938, Ruhlig observed protons with energies larger than 15 MeV. Ruhlig suggested that these high-energy protons were generated by tritium-on-deuterium fusion neutrons scattering protons out of a thin cellophane foil placed inside a cloud chamber. This led Ruhlig to hypothesize that he was observing secondary (in-flight) tritium-on-deuterium fusions and conclude that the d(t,n) reaction “must be an exceedingly probable one.” This was the first attempt to quantify the probability of d(t,n) fusion, using the ~1-MeV tritons generated by d(d,p)t fusion. This caused some Manhattan Project scientists to suggest that the d(t,n) cross sections are significantly higher than those for deuteron-on-deuterium fusion and led to the first measurement of d(3He,p) and d(t,n) cross sections in 1943. Here, we have used modern cross sections and stopping powers to estimate the expected numbers of high-energy protons associated with in-flight d(t,n) reactions in Ruhlig’s experiment. Our estimate is four orders of magnitude lower than Ruhlig’s observed rate. However, the number of high-energy protons in Ruhlig’s experiment can be obtained via simulation if the protons are assumed to have been emitted by secondary in-flight d(3He,p) reactions, with various plausible assumptions about the experimental geometry and target-backing thickness. Our calculations demonstrate that quantitative information about the fusion of A = 3 ions with deuterium could have been obtained via experiments similar to Ruhlig’s well in advance of the advent of 3He ion and triton beams in 1943. This opportunity seems to have been missed.