ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. B. Chadwick, M. W. Paris, G. M. Hale, J. P. Lestone, S. Alhumaidi, J. B. Wilhelmy, N. A. Gibson
Fusion Science and Technology | Volume 80 | Number 1 | October 2024 | Pages S9-S71
Research Article | doi.org/10.1080/15361055.2023.2297128
Articles are hosted by Taylor and Francis Online.
We describe the advancing knowledge of fusion cross sections from 1934 through the development of the first thermonuclear tests fielded by Los Alamos (the singular entity denoted Los Alamos Laboratory/Los Alamos Scientific Laboratory/Los Alamos National Laboratory at different times is designated “Los Alamos” in this paper) in the Pacific in 1951–1952; this technical history has not been previously documented. We compare these nuclear reaction cross sections to the current state of their knowledge as codified in the Evaluated Nuclear Data File (ENDF) databases, focusing on the Big Five reactions: 3HHe, 3HeHe, 2HHe, 2HH, and 3HHe. At Oppenheimer’s July 1942 University of California, Berkeley, “galaxy of luminaries” conference, Konopinski suggested that the cross section for 3HHe “DT” could be large, and although Teller described this as an “inspired guess,” we provide evidence instead suggesting that Konopinski knew of a 1938 measurement by Ruhlig that secondary DT reactions were “exceedingly probable.” Bethe’s direction that the DT cross section should be measured at Purdue University (Purdue) in 1943 led to the remarkable and unexpected finding that the DT cross section exceeds deuteron-deuteron (DD) by a factor of 100. This was a game-changing result, making Teller’s dream, i.e., the terrestrial production of fusion energy, feasible. Eyewitness accounts are transcribed from the earliest discoveries of the large magnitude of the resonant DT cross section. A description is given of the Manhattan Project’s early 1942–1944 DD measurements at the University of Chicago, the 1943 DT measurements at Purdue, and the subsequent 1945–1946 DD and DT measurements at Los Alamos. The Los Alamos experiments, led by Bretscher, were the first to extend to very low incident ion center-of-mass energies in the 6- to 50-keV range needed in applications and the first to identify, characterize, and document the 3/2+ “Bretscher state” responsible for the resonance-enhanced DT cross section. The early measurements were based on thick-target experiments that required a knowledge of hydrogen-isotope stopping powers, much of which was informed by 1930s German studies. We end with the high-accuracy APSST (named for Arnold, Phillips, Sawyer, Stovall, and Tuck) measurements at Los Alamos, 1951–1952. The very first 1942–1946 measurements were accurate to about 50% or somewhat better, but by the early 1950s, the cross sections were determined much more accurately, to within a few percent of our best values today, which come from R-matrix Energy Dependent Analysis (EDA) code analyses of the data, most notably the very accurate 1980s–1990 Los Alamos DT and DD fusion data from Jarmie and Brown. We show that Fermi, in his 1945 Los Alamos lectures, anticipated the S-factor (for the DT cross section), which is a concept widely used later in nuclear astrophysics. To this long abstract, we add a final tidbit: Marshall Holloway, a coauthor on the first-ever 1943 DT cross-section measurement at Purdue, went on to lead the engineering and fabrication of the first H-bomb test, Ivy Mike.