ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
V. I. Vysotskii, M. V. Vysotskyy, S. Bartalucci
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 922-930
Research Article | doi.org/10.1080/15361055.2023.2297326
Articles are hosted by Taylor and Francis Online.
A method for optimizing controlled nuclear fusion in an unstructured target using low-energy particles (e.g., hydrogen) is discussed. The main idea of the method is the use of quasi channeling of such particles in a thin single-crystal film of a graphene type located near the surface of an unstructured target made of an optimal isotope for fusion (e.g., natural Li). Such motion at an optimum particle energy of approximately 500 eV leads to the formation of a coherent correlated state of these particles with very large fluctuations of the transverse energy up to 50 to 100 keV in this film and in the adjacent part of the target. The interaction of these particles with target nuclei leads to the stimulation of effective nuclear fusion p(Li7,α)He4.