ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
N. A. Bulychev
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 916-921
Research Article | doi.org/10.1080/15361055.2024.2302273
Articles are hosted by Taylor and Francis Online.
This work is devoted to the study of plasma-chemical processes determined by the combination of the effect of thermally nonequilibrium, low-temperature plasma and intensive ultrasonic vibrations in the regime of intensive cavitation on liquid-phase media. This method for the realization of plasma-chemical transformations has been proven to be of significant interest and to have advantages for the creation of new nano-sized materials with special properties because it allows for varying the electrophysical and acoustic characteristics of the process when carrying out plasma-chemical reactions and fusion reactions. In this work, a novel facile technique for the synthesis of nanosized silver clusters in plasma discharge under ultrasonic cavitation is reported. Such a type of plasma involves the simultaneous effect of high-intensity cavitation and steady electric discharge in a liquid phase between electrodes of desired material. As a result, stable tiny silver nanoclusters with around a 1-nm size and a relatively narrow particle size distribution were obtained using toluene as a liquid medium. The nanoclusters were characterized with dynamic light scattering, transmission electron microscopy, electron diffraction, and optical methods. The results confirmed the formation of nanoclusters with an absorbance peak around 300 nm and the absence of 400-nm peaks typical for silver nanoparticles. Fluorescence tests allowed for establishing the amorphous structure of the synthesized nanoclusters occupying the intermediate position between few-atom nanoclusters and nanoparticles. The nanoclusters obtained were proven to be stable for more than 3 months. The experiments also revealed the possibility of performing high-temperature plasma-chemical reactions that can be applied in fusion technology.