ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Alexander G. Oreshko, Anna A. Oreshko
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 904-915
Research Article | doi.org/10.1080/15361055.2024.2338020
Articles are hosted by Taylor and Francis Online.
A new method of realizing nuclear fusion reactions based on muon catalysis and the accelerative mechanism is proposed. High-energy ball lightning is periodically generated in a reactor chamber filled with deuterium gas and directed into a container containing liquid tritium. The entry of ball lightning into the tritium is accompanied by the generation of muons and mesomolecules due to a cascade process. Following the ball lightning, a high-energy plasma jet moves under the influence of traveling transverse electromagnetic waves. Deuterium ions and electrons of the jet, accelerated by intense transverse electromagnetic waves, interact with the tritium. Nuclear fusion reactions occur with the participation of muonic molecules at very low temperature. The developed method resolves all physical and technical problems that are inherent in existing traditional methods.