ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Y. Kazantsev, S. N. Kuznetsov, A. Y. Maksimov, N. V. Pchelkina
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 893-903
Research Article | doi.org/10.1080/15361055.2024.2339662
Articles are hosted by Taylor and Francis Online.
An analysis of the prospects for the use of atmospheric optical communication lines at industrial nuclear energy installations, including thermonuclear (fusion) reactors and energy facilities with on-site fuel reprocessing plants, was carried out. It is shown that modern atmospheric communication terminals make it possible to implement high-speed data exchange within the perimeter of energy complexes, as well as to provide an external backup communication channel protected by use of quantum key distribution technology. The absence of the need to lay special cables through limited-access areas to organize high-speed data transmission provides a significant advantage of atmospheric communication systems over any wired communication systems. A methodology is presented for assessing the feasibility of using atmospheric optical communications at nuclear facilities, and based on long-term meteorological observations in the area where ITER (International Thermonuclear Experimental Reactor) is located, graphs of the availability of atmospheric communications are constructed. The high prospects of using atmospheric laser communication at nuclear and fusion facilities are shown.