ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Jianghua Wei, Yuntao Song, Kaizhong Ding, Yonghua Chen, Hui Yuan, Zhoushun Guo
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 843-855
Research Article | doi.org/10.1080/15361055.2024.2312027
Articles are hosted by Taylor and Francis Online.
Proton therapy for tumor treatment is a typical application of nuclear technology. For proton therapy systems, robotic patient positioning systems (PPSs) are increasingly used because of their high flexibility and efficiency. Most robotic PPSs are developed based on industrial robots, which have good repeatability but low absolute position accuracy (1 to 3 mm) and do not satisfy the requirement of highly precise treatment. In this study, an optimized algorithm, named the Back Propagation Neural Network (BPNN) algorithm based on particle swarm optimization, is proposed to improve the performance of absolute positioning accuracy. A comparison of the training for the traditional BPNN and the optimized algorithm is presented. A series of experiments with different payload weights and tools is implemented to validate the performance of the proposed method. The training results show that the proposed method can improve the average predicted positioning error from 0.55 to 0.38 mm. The results of the experiment with a calibration tool show that the average position error is reduced from 4.10 to 0.32 mm. The results of the experiment with a carbon fiber couch top show that the average and maximal positioning errors are 0.35 and 0.77 mm, respectively. All the results verify the feasibility of the proposed method in this study in improving the position accuracy of the robotic PPS.