ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jianghua Wei, Yuntao Song, Kaizhong Ding, Yonghua Chen, Hui Yuan, Zhoushun Guo
Fusion Science and Technology | Volume 80 | Number 7 | October 2024 | Pages 843-855
Research Article | doi.org/10.1080/15361055.2024.2312027
Articles are hosted by Taylor and Francis Online.
Proton therapy for tumor treatment is a typical application of nuclear technology. For proton therapy systems, robotic patient positioning systems (PPSs) are increasingly used because of their high flexibility and efficiency. Most robotic PPSs are developed based on industrial robots, which have good repeatability but low absolute position accuracy (1 to 3 mm) and do not satisfy the requirement of highly precise treatment. In this study, an optimized algorithm, named the Back Propagation Neural Network (BPNN) algorithm based on particle swarm optimization, is proposed to improve the performance of absolute positioning accuracy. A comparison of the training for the traditional BPNN and the optimized algorithm is presented. A series of experiments with different payload weights and tools is implemented to validate the performance of the proposed method. The training results show that the proposed method can improve the average predicted positioning error from 0.55 to 0.38 mm. The results of the experiment with a calibration tool show that the average position error is reduced from 4.10 to 0.32 mm. The results of the experiment with a carbon fiber couch top show that the average and maximal positioning errors are 0.35 and 0.77 mm, respectively. All the results verify the feasibility of the proposed method in this study in improving the position accuracy of the robotic PPS.