ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hisamichi Funaba, Nobuyoshi Ohyabu, Yasuhiko Takeiri, Kiyomasa Watanabe, Shin Kubo, Takashi Shimozuma, Katsumi Ida, Junichi Miyazawa, Ryuichi Sakamoto, Kenichi Nagaoka, Kenji Tanaka, Byron Jay Peterson, Masaki Osakabe, Yoshio Nagayama, Shigeru Inagaki, Yoshiro Narushima, Satoru Sakakibara, LHD Experimental Group, Sadayoshi Murakami
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 262-270
Technical Papers | Stellarators | doi.org/10.13182/FST04-A564
Articles are hosted by Taylor and Francis Online.
In the low-density plasmas of the Large Helical Device, the shape of the electron temperature profile changes depending on the direction of the tangential neutral beam injection (NBI) when the magnetic axis position is inward-shifted at R = 3.50 m. Core flattening was observed in plasmas heated by counter-NBI. The electron thermal diffusivities in co-NBI and counter-NBI-heated plasmas are compared. The diffusivity becomes large at the central region in the case of counter-NBI. This result shows that the flattening in the electron temperature profile is not caused simply by a change in the power deposition only. Some magnetic fluctuations are seen during counter-NBI. On the other hand, it is a promising feature that the electron thermal diffusivity at the peripheral region does not increase with the heating power in co-NBI plasmas.