ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Tyler Guin, Kori McDonald, James Folkert, Chris Verst, Jay Gaillard, Timothy A. DeVol, Valery N. Bliznyuk, George Larsen
Fusion Science and Technology | Volume 80 | Number 6 | August 2024 | Pages 781-791
Research Article | doi.org/10.1080/15361055.2023.2232981
Articles are hosted by Taylor and Francis Online.
Vacuum pumps are the heart of the fusion fuel cycle, but most currently proposed pumping technologies are not capable of handling the required flow rates and vacuum pressures. Oil-containing vacuum pumps can readily meet the flow requirements, but vacuum fluids will degrade in fusion-relevant environments due to contact with tritium and exposure to high-energy radiation. Here, we describe a methodology to screen vacuum fluid candidates and purify these candidate fluids post oxidation, post exposure to deuterium, and post exposure to gamma radiation (<7.5 MGy) to simulate a process in which vacuum fluids can be recovered and regenerated during the fusion fuel cycle. A series of oils, including a highly purified mineral oil, phenyl silicone oil, and a polyphenyl ether, are shown to be suitable candidates for vacuum pumping. Additionally, we describe a simple purification methodology to remove oxidized functionalities and the associated isotopologues induced by contact with deuterium from the candidate vacuum fluids This purification methodology can also be applied to radiological damage with moderate effect. Finally, we demonstrate that the sorbents can be regenerated through electromagnetic microwave digestion.