ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Chuanren Wu, Pierre David, Emiliano Fable, Domenico Frattolillo, Luigi Emanuel Di Grazia, Massimiliano Mattei, Mattia Siccinio, Wolfgang Treutterer, Hartmut Zohm
Fusion Science and Technology | Volume 80 | Number 6 | August 2024 | Pages 766-771
Research Article | doi.org/10.1080/15361055.2023.2234741
Articles are hosted by Taylor and Francis Online.
The flight simulator predicts the dynamic behavior of a full plasma discharge (described in terms of one-dimensional profiles) by employing multiple control loops based on synthetic diagnostics, which could also emulate realistic sensor and actuator models. It serves as a valuable tool for designing and optimizing plasma scenarios, as well as for assessing the feasibility of controlling discharges. The Fenix flight simulator, originally developed for the ASDEX Upgrade, has been ported to EU-DEMO and is capable of modeling any tokamak.
One of the essential elements in a flight simulator is the link between the co-simulated plasma physics and the control loops. This element is tightly coupled to the specifications of both the plasma model and the control algorithms to be implemented; but on the other hand, to ensure the portability and applicability of the flight simulator to different scenarios or devices, the coupling between plasma and control algorithms should be neutral to any concrete device and configuration. In addition, as a serial component of the control loop, data exchange takes place at every single step of the control simulation, therefore an efficient implementation is critical for the overall simulation performance. This paper summarizes the universal approach recently implemented in Fenix, which satisfies all the above requirements while remaining lightweight.