ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
P. N. Maya, S. P. Deshpande
Fusion Science and Technology | Volume 80 | Number 6 | August 2024 | Pages 741-765
Research Article | doi.org/10.1080/15361055.2023.2247854
Articles are hosted by Taylor and Francis Online.
Parameter space for spherical tokamak reactors is explored quantitatively to elucidate the main constraints for spherical tokamak design choices. Using a constant plasma current Ip search constraint, a set of four Ip scenarios (5, 10, 15, and 20 MA) is first explored in a wide parameter space. Considering modest but gradually increasing auxiliary power, a set of four machine configurations (major radius = 1.25, 1.75, 2.25, and 3.5 m) is explored next, optimizing the Ip and the bootstrap fraction. Constraints that narrow down the vast parameter space are elaborated along with critical assumptions, such as current drive efficiency, H-mode enhancement factor, nuclear shielding efficiency, and confinement scaling. Limits on the current density of the center post and how it affects the shielding are quantitatively indicated, thereby setting a lower limit on the aspect ratio.