ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Matthew S. Parsons, Carli S. Smith, Camilo Jaramillo-Correa, Jean Paul Allain
Fusion Science and Technology | Volume 80 | Number 6 | August 2024 | Pages 715-723
Research Article | doi.org/10.1080/15361055.2023.2240200
Articles are hosted by Taylor and Francis Online.
The diagnosis of plasma-facing components in a fusion environment is challenging due to the limited number of measurement techniques that have been developed for in situ surface analysis. In this work, we assess the feasibility of using neutron reflectometry (NR) for the in situ diagnosis of deuterium accumulation in tungsten and dispersion-strengthened tungsten alloys. TRIM is used to simulate deuterium implantation at different energies to approximate the deuterium depth profiles in these materials in order to calculate the expected measurements from NR for various fluences. Our results suggest that NR should be an effective technique for testing hypotheses about the surface composition of materials under fusion-relevant fluences of deuterium irradiation.