ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sümer Sahin, Abdulmuttalip Sahinaslan, Metin Kaya
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 95-108
Technical Paper | doi.org/10.13182/FST98-A56
Articles are hosted by Taylor and Francis Online.
Liquids may be used between the magnetic confined fusion plasma and the first wall of the plasma chamber to reduce the material damage through displacements per atom (dpa) and helium gas production. This could extend the lifetime of the first wall in a magnetic fusion energy (MFE) reactor to a plant lifetime of ~30 yr.Neutronic calculations are carried out in S16P3 approximation for a typical HYLIFE-II blanket geometry, an inertial fusion energy (IFE) reactor design. This provides a comparison of the damage data between compressed and uncompressed targets, for IFE and MFE applications, respectively, by using Flibe (Li2BeF4), natural lithium, and Li17Pb83 eutectic as both coolant and wall protection. In the consideration of mainline design criteria, including sufficient tritium breeding ratio (TBR = 1.1), material protection (dpa < 100 and He < 500 parts per million by atom in 30 yr of operation), and shallow burial index, coolant zone thickness values are found to be 60 cm for Flibe, 171 cm for natural lithium, and 158 cm for Li17Pb83 with Type 304 stainless steel (SS-304) as structural material.Material damage investigations are extended to structural materials made of SiC and graphite for the same blanket to obtain waste material suitable for shallow burial after decommissioning of the power plant.The dpa values and helium production rates in graphite are comparable to those in SS-304. However, they are higher in SiC than in SS-304 and graphite.The average neutron heating density in the external 1.6-mm-thick SS-304 shell of the investigated blanket beyond the SiO2 insulation foam decreases rapidly with increasing thickness of the Flibe coolant. With DR = 60 and 80 cm, it becomes only 594 and 95 W/cm3, respectively. The design limit for heat generation density in superconducting coils for magnetic fusion is 80 W/cm3. A very important result of this work is that a blanket with liquid-curtain protection would not require extra shielding for superconducting coils around the fusion plasma chamber. This could result in an important simplification of the design.