ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Huajiang Jin, Shuaishuai Zhang, Jianxiang Zheng, Jian Zhang, Huifang Miao, Liuxuan Cao
Fusion Science and Technology | Volume 80 | Number 5 | July 2024 | Pages 682-694
Research Article | doi.org/10.1080/15361055.2023.2232229
Articles are hosted by Taylor and Francis Online.
Understanding irradiation-induced degradation processes of nuclear structural materials is essential for creating methodologies and procedures for nuclear reactor safety. Due to the time- and resource-intensive property of both experiments and multiscale simulations of irradiation damage, the trial-and-error approach is completely inefficient. Recently, machine learning techniques have been employed to predict the properties of reduced activation ferritic martensitic (RAFM) steels, such as yield strength and elongation, as well as irradiation embrittlement in steel pressure vessels, with encouraging progress.
In this work, void swelling is predicted using a machine learning method for the first time, taking into account the synergistic effects of displacement damage, helium, and hydrogen. Assisted by the analysis of feature engineering, seven machine learning models are trained and compared by multicriteria evaluation methods. Finally, the parameter-optimized gradient-boosting model is selected as the mapping function with the highest accuracy and universality to predict void swelling. In particular, the dependence of the void swelling and the injection amount of helium and hydrogen in the continuous parameter variation range is predicted beyond the existing experimental data. This work demonstrates the feasibility of machine learning to predict material irradiation damage by synergistic effects and has practical significance in nuclear material optimization and reactor safety.