ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Junjie Zhao, Zhaochun Zhang, Haibo Guo, Yang Wang
Fusion Science and Technology | Volume 80 | Number 5 | July 2024 | Pages 666-681
Research Article | doi.org/10.1080/15361055.2023.2228013
Articles are hosted by Taylor and Francis Online.
A computational study of the thermodynamic and elastic properties of the tungsten-berylliuminterface structure and the behavior of a helium-vacancy pair near the tungsten/beryllium interface is carried out by first-principles calculations. Briefly, the following properties were calculated: (1) electronic properties of the tungsten/beryllium interface structure and (2) thermodynamic functions, Gibbs free energy, entropy, and enthalpy and anisotropies and isotropic (poly-crystalline) elastic moduli (bulk, torsion, Young’s moduli) of the tungsten/beryllium interface structure containing helium interstitial atoms or helium-vacancy pairs. The computational study was to provide a critical appraisal of the effect of helium interstitial atoms on the properties of the tungsten/beryllium interface structure. Calculated interface properties could be incorporated in an antiradiation damaging feature evaluation system to develop and test tungsten-based composites as plasma-facing materials.