ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Junjie Zhao, Zhaochun Zhang, Haibo Guo, Yang Wang
Fusion Science and Technology | Volume 80 | Number 5 | July 2024 | Pages 666-681
Research Article | doi.org/10.1080/15361055.2023.2228013
Articles are hosted by Taylor and Francis Online.
A computational study of the thermodynamic and elastic properties of the tungsten-berylliuminterface structure and the behavior of a helium-vacancy pair near the tungsten/beryllium interface is carried out by first-principles calculations. Briefly, the following properties were calculated: (1) electronic properties of the tungsten/beryllium interface structure and (2) thermodynamic functions, Gibbs free energy, entropy, and enthalpy and anisotropies and isotropic (poly-crystalline) elastic moduli (bulk, torsion, Young’s moduli) of the tungsten/beryllium interface structure containing helium interstitial atoms or helium-vacancy pairs. The computational study was to provide a critical appraisal of the effect of helium interstitial atoms on the properties of the tungsten/beryllium interface structure. Calculated interface properties could be incorporated in an antiradiation damaging feature evaluation system to develop and test tungsten-based composites as plasma-facing materials.