ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Andrew D. Maris, Allen Wang, Cristina Rea, Robert Granetz, Earl Marmar
Fusion Science and Technology | Volume 80 | Number 5 | July 2024 | Pages 636-652
Research Article | doi.org/10.1080/15361055.2023.2229675
Articles are hosted by Taylor and Francis Online.
Tokamaks are often considered to be a leading candidate for near-term, cost-effective fusion energy, but these devices are susceptible to sudden loss of confinement events called disruptions. The threat of disruptions has garnered serious attention in research for the next generation of burning plasma experiments, such as ITER, but has received little treatment in economic studies of magnetic fusion energy. In this paper, we present a model for quantifying the effect of disruptions on the cost of electricity produced by a tokamak power plant (TPP). We outline the various ways disruptions increase costs and decrease revenues, introduce metrics to quantify these effects, and add them to a levelized cost of electricity (LCOE) model. Additionally, we identify several rate-limiting repair steps and introduce a classification system of disruption types based on the time to return to operations. We demonstrate how the LCOE model can be used to find the cost of electricity and the requirements for disruption handling of a TPP, and we further highlight where future research can have a strong impact in neutralizing the “showstopping” potential of disruptions.