ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Andrew D. Maris, Allen Wang, Cristina Rea, Robert Granetz, Earl Marmar
Fusion Science and Technology | Volume 80 | Number 5 | July 2024 | Pages 636-652
Research Article | doi.org/10.1080/15361055.2023.2229675
Articles are hosted by Taylor and Francis Online.
Tokamaks are often considered to be a leading candidate for near-term, cost-effective fusion energy, but these devices are susceptible to sudden loss of confinement events called disruptions. The threat of disruptions has garnered serious attention in research for the next generation of burning plasma experiments, such as ITER, but has received little treatment in economic studies of magnetic fusion energy. In this paper, we present a model for quantifying the effect of disruptions on the cost of electricity produced by a tokamak power plant (TPP). We outline the various ways disruptions increase costs and decrease revenues, introduce metrics to quantify these effects, and add them to a levelized cost of electricity (LCOE) model. Additionally, we identify several rate-limiting repair steps and introduce a classification system of disruption types based on the time to return to operations. We demonstrate how the LCOE model can be used to find the cost of electricity and the requirements for disruption handling of a TPP, and we further highlight where future research can have a strong impact in neutralizing the “showstopping” potential of disruptions.