ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Raghavan Jay Jayakumar
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 225-233
Technical Papers | Stellarators | doi.org/10.13182/FST04-A559
Articles are hosted by Taylor and Francis Online.
Achieving high performance for long duration is a key goal of advanced tokamak research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned noninductive plasma current, (b) internal transport barriers (ITBs) in the ion and electron transport channels over a wide radial region with transport approaching neoclassical values, and (c) control of resistive wall modes and neoclassical tearing modes that limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with this focus; NCS is conducive for obtaining ITBs, a high degree of bootstrap current alignment, and reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization and neoclassical tearing modes in the core NCS region. Much progress has been made in obtaining advanced performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. Radio-frequency and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short-duration and sustained ITBs have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient and trapped electron modes by the negative shear and by the enhanced E × B flow shear rate and rarefaction of resonant surfaces near the rational qmin values. The progress in understanding the underlying physics in such plasmas and the development of techniques and technology would be of interest in stellarator efforts.