ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Raghavan Jay Jayakumar
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 225-233
Technical Papers | Stellarators | doi.org/10.13182/FST04-A559
Articles are hosted by Taylor and Francis Online.
Achieving high performance for long duration is a key goal of advanced tokamak research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned noninductive plasma current, (b) internal transport barriers (ITBs) in the ion and electron transport channels over a wide radial region with transport approaching neoclassical values, and (c) control of resistive wall modes and neoclassical tearing modes that limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with this focus; NCS is conducive for obtaining ITBs, a high degree of bootstrap current alignment, and reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization and neoclassical tearing modes in the core NCS region. Much progress has been made in obtaining advanced performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. Radio-frequency and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short-duration and sustained ITBs have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient and trapped electron modes by the negative shear and by the enhanced E × B flow shear rate and rarefaction of resonant surfaces near the rational qmin values. The progress in understanding the underlying physics in such plasmas and the development of techniques and technology would be of interest in stellarator efforts.