ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Raghavan Jay Jayakumar
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 225-233
Technical Papers | Stellarators | doi.org/10.13182/FST04-A559
Articles are hosted by Taylor and Francis Online.
Achieving high performance for long duration is a key goal of advanced tokamak research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned noninductive plasma current, (b) internal transport barriers (ITBs) in the ion and electron transport channels over a wide radial region with transport approaching neoclassical values, and (c) control of resistive wall modes and neoclassical tearing modes that limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with this focus; NCS is conducive for obtaining ITBs, a high degree of bootstrap current alignment, and reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization and neoclassical tearing modes in the core NCS region. Much progress has been made in obtaining advanced performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. Radio-frequency and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short-duration and sustained ITBs have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient and trapped electron modes by the negative shear and by the enhanced E × B flow shear rate and rarefaction of resonant surfaces near the rational qmin values. The progress in understanding the underlying physics in such plasmas and the development of techniques and technology would be of interest in stellarator efforts.