ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Donald A. Spong, Dennis J. Strickler, Steven P. Hirshman, James F. Lyon, Lee A. Berry, David R. Mikkelsen, Donald A. Monticello, Andrew S. Ware
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 215-223
Technical Paper | Stellarators | doi.org/10.13182/FST04-A558
Articles are hosted by Taylor and Francis Online.
An important goal for a stellarator design is to incorporate enough flexibility to experimentally test a range of physics issues. The proposed Quasi-Poloidal Stellarator device achieves this by allowing independently variable currents in the modular, vertical field, and toroidal coil sets. Numerical optimizations and modeling show that this can allow significant tests of neoclassical cross-field transport rates, reduced poloidal flow damping (relative to the tokamak), and magnetic island width control. This flexibility is achieved in a unique, very low aspect ratio (R0/<a> = 2.7) two-field period (racetrack-shaped) configuration that generates rotational transform from a combination of internal plasma currents and external shaping.