ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Johanna Wydra, Alexander Marsteller, Robin Größle, Florian Priester, Michael Sturm
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 616-622
Research Article | doi.org/10.1080/15361055.2023.2238170
Articles are hosted by Taylor and Francis Online.
Experimental values for the viscosity of the radioactive hydrogen isotope tritium (T2) are currently unavailable in literature. The value of this material property over a wide temperature range is of interest for applications in the fields of fusion and neutrino physics, as well as to test ab initio calculations. As a radioactive gas, tritium requires a careful experiment design to ensure safe and environmental contamination–free measurements. In this contribution, we present a spinning rotor gauge–based tritium-compatible design of a gas viscosity measurement apparatus, or ViMA, capable of covering the temperature range from 80 to 300 K.