ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Florian Priester, Maximilian von Benthen, Robin Größle
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 571-575
Research Article | doi.org/10.1080/15361055.2023.2166779
Articles are hosted by Taylor and Francis Online.
Based on good experience with Raman systems in general and the µRA systems in particular, we try to expand the capabilities and possible applications of Raman spectroscopy. A central aspect is the excitation wavelength since signal intensity and fluorescence background depend on that. Besides the common 532-nm laser (green), we used a 660-nm (red) and 405-nm (blue) laser, hence the name µRA-RGB. All three systems share the same basic principle (fiber coupling between laser, Raman head, and spectrometer) and only differ because of necessary adjustments for the excitation wavelength used, like the laser edge filter. As the original µRA system has already proved its capability to simultaneously detect all six hydrogen isotopologues, this first RGB study was limited to H2, D2, and equilibrated mixtures of both. With one of Tritium Laboratory Karlsruhe’s proven LARA systems connected to the same gas mixing loop system, comparing the µRA systems against it was possible. This paper shows the results of the measurement campaign comparing all three µRA systems (405-, 532-, 660-nm excitation wavelengths) and the comparison to the well-established large Raman systems (LARA, 532 nm).