ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Florian Priester, Maximilian von Benthen, Robin Größle
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 571-575
Research Article | doi.org/10.1080/15361055.2023.2166779
Articles are hosted by Taylor and Francis Online.
Based on good experience with Raman systems in general and the µRA systems in particular, we try to expand the capabilities and possible applications of Raman spectroscopy. A central aspect is the excitation wavelength since signal intensity and fluorescence background depend on that. Besides the common 532-nm laser (green), we used a 660-nm (red) and 405-nm (blue) laser, hence the name µRA-RGB. All three systems share the same basic principle (fiber coupling between laser, Raman head, and spectrometer) and only differ because of necessary adjustments for the excitation wavelength used, like the laser edge filter. As the original µRA system has already proved its capability to simultaneously detect all six hydrogen isotopologues, this first RGB study was limited to H2, D2, and equilibrated mixtures of both. With one of Tritium Laboratory Karlsruhe’s proven LARA systems connected to the same gas mixing loop system, comparing the µRA systems against it was possible. This paper shows the results of the measurement campaign comparing all three µRA systems (405-, 532-, 660-nm excitation wavelengths) and the comparison to the well-established large Raman systems (LARA, 532 nm).