ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Jiaqi Zhang, Akifumi Iwamoto, Keisuke Shigemori, Masanori Hara, Kohei Yamanoi
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 550-557
Research Article | doi.org/10.1080/15361055.2023.2197810
Articles are hosted by Taylor and Francis Online.
Fuel pellets made of a solid deuterium-tritium (D-T) mixture are supplied for inertial confinement fusion. Characterization of the D-T mixture is fundamental for the design and production of high-quality fuel pellets. However, during the phase transition, isotopologue fractionation may lead to fractional crystallization in the solid phase of the hydrogen isotopologue mixture. If this phenomenon occurs in solid D-T fuel, it will reduce the reaction efficiency of nuclear fusion. Currently, there is no effective observation method for fractional crystallization. This study aims to quantify the degree of fractional crystallization of the hydrogen isotopologues mixture in the solid phase using the refractive index measurement. For this method, refractive index information on the hydrogen isotopologues is necessary, therefore the temperature and wavelength dependences of the refractive index of hydrogen isotopologues need to be measured. Then, using the refractive index distribution of the solid D-T will show the composition distribution of isotopologues for assessing the fractional crystallization. Particularly, as far as we know, this is the first time that the measured values of the refractive index versus wavelength of solid D2 have been obtained. Understanding the wavelength dependence of the refractive index for the dispersion compensation allows for a wider application of the fractionated crystallographic observation method.